

STORM SAR

Presenter: Kevin Maschhoff

PI: Kevin Maschhoff, BAE Systems

Team Members: M. Ryba, V. Chandrasakar (CSU)

Program: IIP 19-0012

What Spatial Resolving Power Is Needed to Observe Intense Mid-Latitude Storms From Space?

Radar Reflectivity Cross Section and Hydrometeor (classified) Cross-Section for a Precipitation Event Observed at 23:43UTC, May 29, 2013 by NPOL during the IFLOOD Field Campaign (HydroClass: CL: Clear Air, LD: large drops, DR: drizzle, RA: rain, HR: heavy rain, RH: rain plus hail, HA: hail, GR: graupel, WI: wet ice, DI: dry ice, CR: crystals)

Ground-Based Radar Observations Illustrate that ~ 1 km Horizontal Resolution Needed to Characterize Intense Storms

Problem to Solve-Providing 1 km Horizontal Resolution Precipitation Observations from Space

National Aeronautics and Space Administration

NASA/JAXA's Premier Space-Based Precipitation Radar:

- ~\$1B Mission, a Decade in Development
- Its 5 km Spatial Resolution at Ku-Band is 5x Coarser than Needed For Many Intense Storms

Specific Attenuation at Ka and Higher Frequencies Limits Vertical Profiling of Intense Convective Storms

Global Mapping of Attenuation at Ku- and Ka-Band V. Chandrasekar, Hiroki Fukatsu, and K. Mubarak

While Real-Aperture Diffraction-limited Footprints (and Antennas) are Smaller at Ka, Path Attenuation is Much Larger

SToRM Multi-Static/SpotLight Observation Geometry

_	Key Multi-Static Observation Variables	
7	Observation Parameter	Symbol
	Transmitter → Reference Receiver Separation	В
	Receiver → Receiver Separation	b
7	Orbital Height	Н
X	Altitude of Observed Field	Α
1	Cross-Track Position (relative to Transmitter)	ζ
11/1/1/	Cross-Track Position-Relative to Tx-Rcv ₁ Specular Point	Δζ
7	Range Difference—The Difference in Distance between Observation Field Element and the Receivers	ΔR

$$R_1^2 = (H - A)^2 + (B/2 - \Delta\zeta)^2$$

$$R_2^2 = (H - A)^2 + (\frac{B}{2} + b - \Delta\zeta)^2$$

$$\Delta R = R_2 - R_1$$
For Large R,
$$\Delta R \approx const. \times \Delta\zeta$$

For Typical LEO Orbital Heights, △R Varies Linearly with Crossrange Position, and is Largely Independent of Altitude, A

Along-Track Observation

Employing SAR Spotlight-Mode Methods, Layered Structure is Seen over a Range of Angles-Enabling a Form of Tomography

Next Steps

STORM SAR Instrument Incubator

- Multi-static Microsatellite-Based Concept & Imaging Method Development
- High Fidelity Precipitation Simulation and Observing Performance Modeling
- RF Field Test of Cross-Track Interferometry Method Development and Comparison with X-Band Observations with NSF/CHILL

Back Up Slides